09 Counter Controller Test

Your Name:

A washing machine uses a very simple controller based on a binary up counter. The washing actions are shown in the truth table below.

Binary							
D	C	B	A	Hex	ACTION		
0	0	0	0	0	Turn on inlet valve		
0	0	0	1	1	Slow Drum Spin		
0	0	1	0	2	Pump out water		
0	0	1	1	3	Fast Drum Spin and Pump out water		
0	1	0	0	4	Turn on inlet valve		
0	1	0	1	5	Slow Drum Spin		
0	1	1	0	6	Pump out water		
0	1	1	1	7	Fast Drum Spin and Pump out water		
1	0	0	0	8	Turn on inlet valve		
1	0	0	1	9	Slow Drum Spin		
1	0	1	0	A	Pump out water		
1	0	1	1	В	Fast Drum Spin and Pump out water		
1	1	0	0	C	STOP		

- 1. Draw a circuit diagram with one logic gate that would detect the STOP signal. Label the inputs and output.
- 2. Complete this Boolean expression:

Slow Drum Spin = \overline{D} . \overline{C} . \overline{B} . A +

3. Draw the circuit diagram corresponding to the Boolean expression above.

4. Fill in this Karnaugh map corresponding to the Boolean expression above and then draw a new simplified circuit diagram that solves the Slow Drum Spin problem..

	B A	B A	ΒA	B A
D C	0 0	01	11	10
0 0				
01				
11				
10				